
A Framework and Components for ECA Rules in the Web (Demo)

Erik Behrends, Oliver Fritzen, Wolfgang May, Franz Schenk,Daniel Schubert
Institut für Informatik, Universität Göttingen, Germany

{behrends,fritzen,may,schenk,schubert}@informatik.uni-goettingen.de

The ECA Framework

Event-Condition-Action (ECA) rules are a popular paradigm
for specifying behavior: “ON event IF condition DO action”
has a clear declarative semantics and induces an immediate
operational realization. The core of our approach for ECA
rules in the Web and the Semantic Web is a model and archi-
tecture for ECA rules that usesheterogeneous event, query,
and action languages. The condition component is divided
into queries (that can be expressed in different languages)
and a test component (cf. Figure 1):

ON event AND additional knowledge, IF condition
THEN DO something.

For dealing with heterogeneous languages, the approach is
parametric in the used component languages. Users regis-
ter rules in the ECA-ML language [3] at an ECA service
in the Web that provides the infrastructure and global rule
semantics:

<eca:rule xmlns:eca=“http://.../eca/2006/eca-ml”>

<eca:event>. . . </eca:event>
<eca:query>. . . </eca:query>

<eca:test>. . . </eca:test>
<eca:action>. . . </eca:action>

</eca:rule>

For the rule components, the users may use component
languages of their choice. The markup of the rules indi-
cates the “language borders” between the ECA level and the
nested components by their namespaces. The components
are specified as nested subexpressions of the form

<eca:component xmlns:lang=“embedded-lang-ns-uri”>

embedded fragment in embedded language’s
markup and namespace

</eca:component>

in suitable event, query, or action formalisms or languages.
The approach does only minimally constrain the component
languages: Information flow between the ECA engine and
the event, query, test, and action components is provided
by logical variables in the style of deductive rules, produc-
tion rules etc. Thus, languages following a functional style
(such as XPath/XQuery), a logic style (such as SPARQL, or
both (F-Logic) can be used as query languages. The seman-
tics of the event part (that is actually a “query” against an

event stream that is evaluated incrementally, usually spec-
ified by some event algebra) is –from that point of view–
very similar. The action component, specified e.g. by a pro-
cess algebra, takes variable bindings as input.

For processing the components, the ECA engine deter-
mines alanguage processor node for the indicated specifi-
cation language, and submits the task to that node. A de-
tailed description of the ECA engine can be found in [2].
In the meantime, component services for handling atomic
events, composite events based on the SNOOP event alge-
bra, opaque language services, i.e., data sources that are
based on XPath, XQuery or SPARQL, and atomic actions
have been integrated. A component for processing CCS-
based action specifications [1] is under implementation.
Domain nodes can use a node architecture based on Jena
extended with triggers [5]; a domain broker is under im-
plementation. The service identification based on the lan-
guage’s namespace URIs is done by aLanguage&Service
Registry. An online prototype can be found athttp:
//www.semwebtech.org/eca/frontend.

Figure 2 illustrates the overall communication between
different kinds of language services and domain services:
A client registers a rule (e.g., in thetravel domain) at the
ECA engine (Step 1.1). It submits the event component
to the appropriatecomposite event detection service (1.2),
here, a SNOOP service. The SNOOP engine registers
all atomic event patterns at the appropriateatomic event
matcher (AEM) (1.3). The AEM looks at the namespaces
of the atomic events and sees that thetravel ontology is rel-
evant. It contacts a travel domain broker (1.4) that keeps
it informed (2.2) about atomic events (e.g., happening at
Lufthansa (2.1a) and SNCF (2.1b)). The AEM matches the
events against the registered patterns, and in case of a suc-
cess, reports the matched event and the extracted variable
bindings to the SNOOP service (3). Only after detection
of a registered composite event, SNOOP submits the result
to the ECA engine (4) that then evaluates the query and test
components, and submits the action to the CCS service (5.1)
that in turn submits the atomic actions to the domain broker
and other services (5.2 and 5.3).

The global architecture and the general markup princi-
ples are described in [4] and [3].

1



Rule Model ECARule

EventComponent ConditionComponent ActionComponent

Query Comp. Test Comp.

Event
Language

Query
Language

Test
Language

Action
Language

Languages Model
Language
Name
URI

Processor
service/plugin
syntax definition

1
0..1

1..*

* 1

�

�

�

�

↓uses ↓uses ↓uses ↓uses

impl by

Figure 1. ECA Rule Components and Corresponding Languages (from [3])

Event
Detection
snoop:

Atomic Event
Matcher
match:

ECA
Engine
eca:Action

Engine
ccs:

Domain
Broker
travel: SMTP Mail

Service
smtp:

Lufthansa
travel:

SNCF
travel:

ClientC:
Travel
Agency
travel:

1.1: register
rule
eca: travel:
match: snoop: ccs:
smtp:

1.2: register event
travel: match: snoop:

1.3: atomic
event patterns
match: travel:

1.4:
register me
travel:

2.1a:
atomic
events
travel:

2.1b:
atomic
events
travel:

2.2:
atomic events
travel:

3: detected
parameters

4: detected
parameters

5.1: action
ccs: travel: smtp:

5.2a: atomic
actions travel:

5.2b: atomic
actions smtp:

5.3b:
message
(here:
confirm)
by url

L
an

g
u

ag
e

S
er

vi
ce

s
A

p
p

lic
at

io
n

D
o

m
ai

n

5.3a:
LH
booking
travel:

Figure 2. Language-Centered Communication

Acknowledgements. This research has been partially
funded by the European Commission within the 6th Fra-
mework Programme project REWERSE, no. 506779.

References
[1] E. Behrends, O. Fritzen, W. May, and F. Schenk. Com-

bining ECA Rules with Process Algebras for the Se-
mantic Web. InRule Markup Languages (RuleML), to
appear with IEEE, 2006.

[2] E. Behrends, O. Fritzen, W. May, and D. Schubert. An
ECA Engine for Deploying Heterogeneous Component
Languages in the Semantic Web. InWeb Reactivity
(EDBT Workshop), Springer LNCS 4254, 2006.

[3] W. May, J. J. Alferes, and R. Amador. Active rules in
the Semantic Web: Dealing with language heterogene-
ity. Rule Markup Languages (RuleML), Springer LNCS
3791, 2005.

[4] W. May, J. J. Alferes, and R. Amador. An ontology-
and resources-based approach to evolution and reactiv-
ity in the Semantic Web. InOntologies, Databases and
Semantics (ODBASE), Springer LNCS 3761, 2005.

[5] W. May, F. Schenk, and E. v. Lienen. Extending an
OWL Web node with reactive behavior. InPrinciples
and Practice of Semantic Web Reasoning (PPSWR),
Springer LNCS 4187, 2006.

2


