Translating Ontologies from Predicate-based to Frame-based Languages

Jos de Bruijn and Stijn Heymans

Digital Enterprise Research Institute (DERI)
University of Innsbruck, Austria
{jos.debruijn,stijn.heymans}@deri.org

RuleML 2006 2006-11-10

Outline

The Semantic Web Languages Zoo

Translating Predicate-based Ontologies to F-Logic

The Translation Cardinal Formulas Equality-safe Formulas \mathcal{SHIQ} Layering

Description Logic Programs (DLP)

- ▶ Intersection of SHOIN (OWL DL) and Logic Programming
- ▶ Essentially, the Horn subset of \mathcal{SHOIN} : \mathcal{DHL} (Description Horn Logic)
- ▶ DHL descriptions:

$$C, D \longrightarrow A \mid C \sqcap D \mid \exists R.\{o\}$$

$$C_L, D_L \longrightarrow C \mid C_L \sqcup D_L \mid \exists R.C_L \mid \geqslant 1R_L \mid \{o_1, \dots, o_n\}$$

$$C_R, D_R \longrightarrow C \mid \forall R.C_R$$

▶ \mathcal{DHL} axioms: $C_L \sqsubseteq D_R \mid C \equiv D \mid R \sqsubseteq S \mid R \equiv S \mid R \equiv S^- \mid$ $\mathsf{Trans}(R) \mid \top \sqsubseteq \forall R^-.C_R \mid \top \sqsubseteq \forall R.C_R \mid a \in A \mid$ $\langle a, b \rangle \in R$

Layering on DLP

▶ A \mathcal{DHL} ontology Φ and the corresponding logic program P_{Φ} agree on ground entailment (Herbrand)

```
Example
 \Phi = \{ (Male \sqcup Female) \sqcap \exists hasSpecies. \{human\} \sqsubseteq Person; \}
                                          Person \square \forall hasName.String;
                        john \in Person; \langle john, "John" \rangle \in hasName
 P_{\Phi} = \{ Person(x) \leftarrow Male(x), hasSpecies(x, human); \}
              Person(x) \leftarrow Female(x), hasSpecies(x, human);
                        String(y) \leftarrow Person(x), hasName(x, y);
                          Person(john); hasName(john, "John")
```

Both Φ and P_{Φ} have as only ground entailments: Person(john); hasName(john, "John"); String("John")

DLP and F-Logic Programs

- ▶ P_{Φ} has as only ground entailments: $john: Person; john[hasName \rightarrow "John"]; "John": String$
- This corresponds to the ground entailments of Φ
- ▶ But, does this hold for all \mathcal{DHL} ontologies?

The Semantic Web Languages Zoo

The Semantic Web Languages Zoo (con't.)

The Translation

Entity	Predicate style	Frame style
Class	$\delta(A(X))$	X : A
Property	$\delta(R(X,Y))$	$X[R \rightarrow Y]$
Equality	$\delta(X=Y)$	X = Y
<i>n</i> -ary predicate	$\delta(P(\vec{X}))$	$P(\vec{X})$
Universal	$\delta(\forall \vec{x}(\phi))$	$\forall \vec{x}(\delta(\phi))$
Existential	$\delta(\exists \vec{x}(\phi))$	$\exists \vec{x}(\delta(\phi))$
Conjunction	$\delta(\phi \wedge \psi)$	$(\delta(\phi) \wedge \delta(\psi))$
Disjunction	$\delta(\phi \lor \psi)$	$(\delta(\phi) \vee \delta(\psi))$
Implication	$\delta(\phi\supset\psi)$	$\delta(\phi) \supset \delta(\psi)$
Negation	$\delta(\neg\phi)$	$\neg(\delta(\phi))$

Translation Example

$$\phi = (\forall x, y(x = y)) \supset (q(a) \leftrightarrow r(a)).$$

"If every individual is equal to every other, then the interpretations of q and r coincide."

 ϕ is not a theorem of first-order logic.

$$\delta(\phi) = (\forall x, y(x = y)) \supset (a: q \leftrightarrow a: r).$$

"If every individual is equal to every other, then a is either a member of both q and r or of neither." $\delta(\phi)$ is a theorem of F-Logic, because class identifiers are

 ϕ is not a cardinal formula.

interpreted as individuals.

Cardinal Formulas

Definition

 $\phi \in \mathcal{L}$ is a formula and γ is the number of symbols in \mathcal{L} .

An interpretation $w = \langle U, \cdot^I \rangle$ is cardinal if $|U| \ge \gamma$.

 ϕ is <u>cardinal</u> if the following holds:

If ϕ is true in every cardinal interpretation of \mathcal{L} , then ϕ is true in every interpretation of \mathcal{L} .

Theorem

Let $\Phi \subseteq \mathcal{L}$ be a set of formulas and $\phi \in \mathcal{L}$ be a formula,

if
$$\Phi \models \phi$$
 then $\delta(\Phi) \models_f \delta(\phi)$.

If $\neg(\land \Phi) \lor \phi$ is cardinal, then also

$$\Phi \models \phi \quad iff \quad \delta(\Phi) \models_{\mathsf{f}} \delta(\phi).$$

Cardinal Formulas (con't.)

- Definition of cardinal formulas is semantical
- Which classes of formulas are cardinal?

Lemma (Chen, Kifer, and Warren, 93)

The following classes of first-order formulas are cardinal.

- 1. Sets of equality-free sentences, and
- 2. formulas of the form $\neg S$, where S is a conjunction of Horn clauses without equality in the head.

Captures OWL DL without nominals, number restrictions, functional properties, and equality assertions. Is sufficient for layering F-Logic on top of \mathcal{DHL} . Can we do better? Yes!

\mathcal{E} -safe Formulas

Definition

$$I\mathcal{ESF} ::= A \mid \neg A \mid \phi_1 \land \phi_2 \mid \phi_1 \lor \phi_2 \mid \\ \forall \vec{x} (\chi \supset \phi) \mid \exists \vec{x} (\chi \land \phi)$$

A is an atom $p(\vec{t})$ or $t_1 = t_2$ with t_1, t_2 either both ground or non-ground terms;

 ϕ, ϕ_1, ϕ_2 are $I\mathcal{E}$ -safe formulas;

 χ is an atom $p(\vec{t})$ or a conjunction of atoms of the form $p(\vec{t})$ such that the variable graph of χ is connected; every free variable in ϕ must appear in χ .

$$\mathcal{ESF} ::= \varphi \mid \forall x(\phi) \mid \exists x(\phi) \mid \psi_1 \wedge \psi_2 \mid \psi_1 \vee \psi_2$$

 ψ_1, ψ_2 are \mathcal{E} -safe formulas; ϕ , φ are $I\mathcal{E}$ -safe formulas; x is the only free variable in ϕ .

\mathcal{E} -safe Formulas (con't.)

Example

The following formulas are \mathcal{E} -safe:

$$\forall x(p(x) \supset q(x))$$

$$\forall x(s(x,y) \supset p(x))$$

$$\exists x, y(p(x) \land r(x,y) \land x = y)$$

$$\forall x(r(x))$$

The following formulas are not \mathcal{E} -safe:

$$\forall x, y(x = y)$$

$$\forall x, y(a(x) \land a(y) \supset x = y)$$

$$\forall x, y(x = y \supset p(x, y))$$

$$\forall x(x = a)$$

 $\forall x(x = a)$ is equivalent to the \mathcal{SHOIQ} axiom $\top \sqsubseteq \{a\}$, thus \mathcal{SHOIQ} is not \mathcal{E} -safe.

\mathcal{E} -safe formulas are cardinal

Lemma

The class of \mathcal{E} -safe sentences is cardinal.

\mathcal{SHIQ} formulas are \mathcal{E} -safe

Theorem

Any (negation of a) SHIQ axiom ϕ can be rewritten to an \mathcal{E} -safe formula ϕ' such that ϕ and ϕ' are equivalent, i.e., share the same models.

Corollary

Let Φ be a set of SHIQ axioms and ϕ a SHIQ axiom, then

$$\Phi \models \phi \quad iff \quad \delta(\Phi) \models_{\mathsf{f}} \delta(\phi).$$

Establishes layering of WSML-Full on top of WSML-DL.

Questions?