Semantic Web

User Interface & applications

Trust

Proof

Unifying Logic

Query: SPARQL

ontology: OWL

Rules: RIF

RDF-S

Data interchange: RDF

XML

URI

Unicode

Crypto
Languages

- RDF Schema
- OWL
- SWRL
- Jena Rules Language
- SPARQL

- RDF Triples are the common foundation
RDF Graphs and Triples

RDF/XML Serialization:

```xml
<MalePerson rdf:ID="John">
  <hasChild rdf:resource="#Mary"/>
</MalePerson>
```

N3/Turtle Serialization:

```turtle
:John a :MalePerson ;
  :hasChild :Mary .
```
Triple Pattern Matching

Subject: ?p

 Predicate: rdf:type MalePerson

 Object: hasChild ?c

 Subject: John

 Predicate: hasChild

 Object: ?c

 Subject: Mary
Rules & Triples

• Execution of rules infers new triples

[defineUncle:
 (?p :hasChild ?c)
 (?p :hasSibling ?s)
 (?s rdf:type :MalePerson)
 -> (?c :hasUncle ?s)]
Components of a Rule

- **Triple patterns** – like a triple, but with some named variables instead of fixed parts
 - `?company rdf:type :MajorCompany`
 - `Fortune500 :lists ?company`
 - `?company :hasCEO ?person`

- **Rule “Body”**
 - Set of triple patterns, all of which must match
 - Each variable must be ‘bound’ to the same item at every occurrence
 - `HP rdf:type :MajorCompany`.
 - `Fortune500 :lists HP`.
 - `HP :hasCEO Fiorina`.

- **Rule “Head”**
 - Set of triple patterns that will be asserted, when the body matches
 - Variables in these patterns have values that were bound in the body
Demos

• Tools
 – Protégé + JESS
 – TopBraid Composer + Jena

• Example use cases
 – Family relationships
 – Real estate business
 – Ontology Mapping
Example Scenario

- Real Estate agents
 - “Database” of available properties
 - Properties are updated continuously
 - Customers have specific search patterns
 - The rule system shall notify the agent if a matching property has been added
Design

• OWL Ontology with domain concepts
 – Real Estate Properties
 – Characteristics of properties
 – Suburbs
 – Local attractions of the suburbs

• (Jena) Rules to drive matching
Ontology Overview (1)

- Real Estate properties are located in Suburbs
- Suburbs have local attractions (Beaches etc)
Ontology Overview (2)

- We have various types of Real Estate properties
- Properties are suggested to Customers
Instance Database
Example Instance
Rule 1: Convert Currencies

• Property prices are in Australian Dollars
• Customers may ask for prices in $US

[convertAU2USDollar:
 (?p :priceAU ?aud)
 product(?aud 0.7745 ?usd)
 -> (?p :priceUS ?usd)]
Rule 2: Simple Matching

- Customer Mike Turner is looking for a three-bedroom house

```
[findMatchesForMikeTurner:
 (?p rdf:type :House)
 (?p :bedrooms 3)
 -> (:MikeTurner :suggestedProperty ?p)]
```
Rule 3: Matching

- Rebecca is looking for a property close to a shopping mall

```
[findMatchesForRebeccaSmith:
    (?p :location ?l)
    (?l :attraction ?a)
    (?a rdf:type :ShoppingMall)
  -> (:RebeccaSmith :suggestedProperty ?p)]
```
Rule 4: Classification

• Find all properties that are located in a suburb that has a beach with a swimming enclosure

[findSafeSwimmingInstances:
 (?p rdf:type :RealEstate)
 (?p :location ?s)
 (?s :attraction ?a)
 (?a rdf:type :Beach)
 (?a :swimmingEnclosure "true"^^xsd:boolean)
 -> (?p rdf:type :PropertyWithSafeSwimmingBeach)]
Rule 5: Complex Matching

- John Doe is looking for a property with a safe swimming beach, at least 4 bedrooms and less than US$ 900,000

[findMatchesForJohnDoe:
 (?p rdf:type :PropertyWithSafeSwimmingBeach)
 (?p :priceUS ?usd)
 (?p :bedrooms ?b)
 lessThan(?usd 900000)
 greaterThan(?b 3)
 -> (:JohnDoe :suggestedProperty ?p)]
Rule Chaining

• Rule 5 depends on Rules 1 & 4

[findMatchesForJohnDoe:
(?p rdf:type :PropertyWithSafeSwimmingBeach)
(?p :priceUS ?usd)
(?p :bedrooms ?b)
lessThan(?usd 900000)
greaterThan(?b 3)
-» (:JohnDoe :suggestedProperty ?p)]

[findSafeSwimmingInstances:
(?p rdf:type :RealEstate)
(?p :location ?s)
(?s :attraction ?a)
(?a rdf:type :Beach)
(?a :swimmingEnclosure "true"^^xsd:boolean)
-» (?p rdf:type :PropertyWithSafeSwimmingBeach)]

[convertAU2USDollar:
(?p :priceAU ?aud)
product(?aud 0.7745 ?usd)
-» (?p :priceUS ?usd)]
Rule 6: Copying Values

• Whenever something is a suggestedProperty, then we want to copy its image into suggestedPropertyImage

[copyImages:
 (?c :suggestedProperty ?p)
 (?p :image ?i)
-> (?c :suggestedPropertyImage ?i)]
Executing Rules
Browsing Suggestions
OWL DL and Rules

• Rules can be executed “on top of” DL
• DL can be implemented by Rules
OWL vs. Rules

<table>
<thead>
<tr>
<th>OWL</th>
<th>SWRL / RIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>W3C Recommendation</td>
<td>Standard in Progress</td>
</tr>
<tr>
<td>Recent implementations</td>
<td>>20 years technology</td>
</tr>
<tr>
<td>Formal decidability</td>
<td>Possibility of Spaghetti code</td>
</tr>
<tr>
<td>Restriction language highly constrained</td>
<td>Powerful pattern language</td>
</tr>
</tbody>
</table>
SPARQL

- Not designed as a rule language
- W3C Standard query language for RDF
- Triple matching
 - SELECT
 - CONSTRUCT
- “Pragmatic” rule language
Schema Mapping with SPARQL
Schema Mapping (2)
SPARQL and RULES (SWRL)

<table>
<thead>
<tr>
<th>SPARQL</th>
<th>RULES (SWRL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex patterns with ?variables</td>
<td>Complex patterns with ?variables</td>
</tr>
<tr>
<td>Defaults, options, boolean operations</td>
<td>AND only</td>
</tr>
<tr>
<td>Filters with math</td>
<td>SWRLb built-ins for math</td>
</tr>
<tr>
<td>Run under user/program control</td>
<td>chaining opportunistically</td>
</tr>
<tr>
<td>Optimized for a single query</td>
<td>Optimized for groups of rules</td>
</tr>
</tbody>
</table>